

Designation: D4542 - 22

Standard Test Methods for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer¹

This standard is issued under the fixed designation D4542; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 These test methods cover a rapid procedure for squeezing pore water from fine-grained soils for the purpose of determining the amount of soluble salts present in the extracted pore water.
- 1.2 These test methods were developed for soils having a water content equal to or greater than approximately 14 %, for example, marine soils. An extensive summary of procedures for extracting pore water from soils has been presented by Kriukov and Manheim (1).
- 1.3 These test methods are not generally applicable for determining the soluble salt content of the pore water extracted from coarse-grained soils, such as clean sands and gravels.
- 1.4 Test Method A provides a procedure using a refractometer with a refraction index scale; Test Method B provides a procedure using a refractometer with a parts per thousand (ppt) scale.
- 1.5 *Units*—The values stated in SI units are to be regarded as the standard.
- 1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by these test methods.
- 1.6.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.

- 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:³

D653 Terminology Relating to Soil, Rock, and Contained Fluids

D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

D6026 Practice for Using Significant Digits and Data Records in Geotechnical Data

E832 Specification for Laboratory Filter Papers

2.2 Federal Document:

GG-S-945a Specification for Syringe and Needle, Disposable, Hypodermic, Sterile, Single Injection⁴

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of common technical terms used in this standard, refer to Terminology D653.
 - 3.2 Acronyms:
 - 3.2.1 ppt, n—parts per thousand

¹ This test method is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.06 on Physical-Chemical Interactions of Soil and Rock.

Current edition approved Aug. 1, 2022. Published August 2022. Originally approved in 1985. Last previous edition approved in 2015 as D4542-15. DOI: 10.1520/D4542-22.

² The boldface numbers in parentheses refer to the list of references appended to this standard.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from Naval Publications and Forms Center, 5801 Tabor Ave., Philadelphia, PA, 19120.

4. Significance and Use

4.1 The soluble salt content may be used to correct the index properties of soils such as water content, void ratio, specific gravity, degree of saturation, and dry density.

Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

5. Apparatus

- 5.1 *Refractometer*—A temperature compensated refractometer scaled to either index of refraction (Method A) or ppt (Method B). A typical hand held refractometer is shown in Fig. 1.
- 5.2 Soil Press—The apparatus shall conform to the example shown in Fig. 2 and should be constructed from material appropriate for the application and chemically compatible with the material being tested. Use flexible TFE-fluorocarbon gaskets on each side to prevent soil/mud from circumventing the stainless steel wire screen.
- 5.3 Syringe—A 25 cm³ disposable syringe without needle, in accordance with Fed. Std. GG-S-945a.
- 5.4 *Balance*—A balance conforming to the requirements of Guide D4753 and having a readability without estimation of 0.01 g.

5.5 Filter Paper:

- 5.5.1 A general purpose quantitative filter paper in accordance with Specification E832, Type II, Class F, for medium crystalline precipitates in the size range from 5 to 10 μ m, with an ash content of 0.13 mg/12.5-cm circle. Cut filter paper to a diameter of 55 mm.
- 5.5.2 A general purpose quantitative filter paper in accordance with Specification E832, Type II, Class G, for fine crystalline precipitates in the size range from $0.45~\mu m$, with an ash content of 0.13~mg/12.5-cm circle. Cut filter paper to a diameter of 25~mm.

FIG. 1 Typical Hand-Held Refractometer

- 5.6 *Refrigerator*—Cooling unit capable of maintaining a uniform temperature between 1 and 5°C.
- 5.7 *Micro-Syringe Filter Holder*—A device made of stainless steel to filter a liquid directly from a syringe.⁵
- 5.8 *Bottle*—A clean 100 mL polyethylene or glass bottle with cap.
- 5.8.1 A clean bottle is one that is washed with detergent and rinsed with tap water. Then rinsed once with diluted HCl (1:10), twice with distilled water, and then drained thoroughly.
- 5.9 *Miscellaneous Supplies*—Items such as steel wool, soap/detergent, compressed air, and sterile plastic bags may be useful, necessary, or both.

6. Reagents

- 6.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytic Reagents of the American Chemical Society, where such specifications are available.⁶
 - 6.1.1 Hydrochloric Acid diluted 1:10
 - 6.1.2 Alcohol
 - 6.1.3 Chromic acid
 - 6.1.4 Acetone
 - 6.2 Distilled water

7. Preparation of Apparatus

- 7.1 Soil Press—Wash the parts of the soil press thoroughly. Rinse twice with distilled water and dry. Make sure there is no rust present, especially inside or around the top of the cylinder. If rust is present, scrub gently with steel wool and soap or chromic acid. Rinse well with tap water and then twice with distilled water and dry.
- 7.1.1 If the soil press parts have been coated with rust preventer, wash them with alcohol and rinse once with tap water and twice with distilled water.
- 7.1.2 Dry by a method that will not contaminate the press. Clean compressed air, oven or air drying, or rinsing with acetone followed by air drying are acceptable.
 - 7.1.3 Assemble the soil press.
- 7.2 *Refractometer*—Thoroughly wash with distilled water and dry the refractometer.

8. Sampling and Test Specimen Preparation

- 8.1 To reduce the potential for undesirable chemical changes that may occur within the soil, keep the time period between sampling and testing to a minimum (Note 2).
- 8.2 Select a representative soil sample of at least 50 g and place into the cylinder on top of a single sheet of Class F filter paper cut to a diameter of 55 mm.

⁵ An apparatus such as the stainless steel Millipore Micro-Syringe Filter Holder XX30-025-00 is satisfactory for this purpose.

⁶ Reagent Chemicals, American Chemical Society Specifications," American Chemical Society, Washington, DC. For suggestions on the testing of reagents lot listed by the America Chemical Society, see "Reagent Chemicals and Standards," by Joseph Rosin, D. Van Nostrand Co., Inc., New York, NY, and the "United States Pharmacopeia."